Gromov–Witten Theory of Blowups of Toric Threefolds
نویسندگان
چکیده
We use toric symmetry and blowups to study relationships in the Gromov– Witten theories of P3 and P1×P1×P1. These two spaces are birationally equivalent via the common blowup space, the permutohedral variety. We prove an equivalence of certain invariants on blowups at only points of P3 and P1×P1×P1 by showing that these invariants descend from the blowup. Further, the permutohedral variety has nontrivial automorphisms of its cohomology coming from toric symmetry. These symmetries can be forced to descend to the blowups at just points of P3 and P1×P1×P1. Enumerative consequences are discussed.
منابع مشابه
A Mathematical Theory of the Topological Vertex
We have developed a mathematical theory of the topological vertex— a theory that was originally proposed by M. Aganagic, A. Klemm, M. Mariño, and C. Vafa on effectively computing Gromov-Witten invariants of smooth toric Calabi-Yau threefolds derived from duality between open string theory of smooth Calabi-Yau threefolds and Chern-Simons theory on three manifolds.
متن کاملGromov-witten Invariants of Toric Calabi-yau Threefolds
This is an expository article on “A mathematical theory of the topological vertex” by J. Li, K. Liu, J. Zhou, and the author.
متن کاملIntegrality of Gopakumar–vafa Invariants of Toric Calabi–yau Threefolds
The Gopakumar–Vafa invariant is a number defined as certain linear combination of the Gromov–Witten invariants. We prove that the GV invariants of the toric Calabi–Yau threefold are integers and that the invariants at high genera vanish. The proof of the integrality is the elementary number theory and that of the vanishing uses the operator formalism and the exponential formula.
متن کاملOn Gromov-witten Theory of Root Gerbes
This research announcement discusses our results on Gromov-Witten theory of root gerbes. A complete calculation of genus 0 Gromov-Witten theory of μr-root gerbes over a smooth base scheme is obtained by a direct analysis of virtual fundamental classes. Our result verifies the genus 0 part of the so-called decomposition conjecture which compares Gromov-Witten theory of étale gerbes with that of ...
متن کاملLarge N Duality for Compact Calabi - Yau Threefolds
We study geometric transitions for topological strings on compact Calabi-Yau hypersurfaces in toric varieties. Large N duality predicts an equivalence between topological open and closed string theories connected by an extremal transition. We develop new open string enumerative techniques and perform a high precision genus zero test of this conjecture for a certain class of toric extremal trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012